

#### Finalidade

Método UV otimizado (SFBC) para a determinação de lactato desidrogenase (LDH) em soro ou plasma.

### Significado clínico

A determinação da atividade do lactato desidrogenase (LDH) tem uma grande variedade de aplicações clínicas. Visto que é uma enzima intracelular, sua elevação é indício de dano tissular com a conseqüente liberação da enzima à circulação. O dano pode variar desde uma simples anoxia com ligeiro dano celular e perda de citoplasma até necrose celular severa gerando diversos graus de elevação da atividade enzimática.

No enfarte agudo do miocárdio, a atividade de LDH total (junto com a de CK e AST) constitui um elemento importante de diagnóstico. A atividade cardíaca começa a aumentar 12 a 24 horas após o enfarte, alcança um pico entre as 48-72 horas e permanece elevada até o sétimo ou décimo dia. Também se registra um aumento da atividade de LDH total em pacientes com necrose hepática (produzida por agentes tóxicos ou por infecções agudas como a hepatite viral) e também acompanhando necrose tubular renal, pielonefrite, etc. Nos tumores sanguíneo como leucemias e linfomas também são observados valores aumentados de LDH. No líquido cefalorraquidiano (LCR) o valor normal é aproximadamente 10% do seu valor em soro, aumentado marcantemente seu valor em meningites bacterianas. Nas meningites virais a LDH aumenta seu valor só em 10% dos casos.

#### Fundamentos do método

Baseado no seguinte esquema de reação:

LDH

L-lactato + NAD

As concentrações do ensaio estão otimizadas de acordo com a Sociedade Francesa de Biologia Clínica (SFBC).

#### Reagentes fornecidos

piruvato + NADH + H+

A. Reagente A: solução de tampão Tris pH 7,2 contendo piruvato e cloreto de sódio.

B. Reagente B: solução contendo NADH.

### Concentrações finais (segundo SFBC)

| Tris     | 80 mM; pH 7,2 |
|----------|---------------|
| Piruvato | 1,6 mmol/L    |
| NADH     | 0,2 mmol/L    |
| CINa     | 200 mmol/L    |

# Instruções para uso

Reagentes Fornecidos: prontos para uso. Podem-se usar separados ou como Reagente único, misturando 4 partes de Reagente A com 1 parte de Reagente B (ex.: 4 mL Reagente A + 1 mL Reagente B).

# Precauções

Os reagentes são para uso diagnóstico "in vitro".

Utilizar os reagentes observando as precauções habituais de trabalho no laboratório de análises clínicas.

Todos os reagentes e as amostras devem ser descartadas conforme à regulação local vigente.

# Estabilidade e instruções de armazenamento

Reagentes Fornecidos: são estáveis sob refrigeração (2-8°C) até a data de vencimento indicada na embalagem. Uma vez abertos, não devem permanecer destampado nem fora do refrigerador por períodos prolongados. Evitar contaminações.

Reagente único (pre-misturado): é estável um mês sob refrigeração (2-8°C), a partir do momento de sua preparação.

# Indícios de instabilidade ou deterioração dos reagentes

Quando o espectrofotômetro for levado a zero com água destilada, leituras de absorbância do Reagente único abaixo de 0,800 D.O. ou acima de 1,800 D.O. (a 340 nm) são indícios de deterioração do mesmo.

# Amostra

Soro ou plasma

- a) Coleta: deve-se obter soro do modo usual e separar do coágulo dentro de até duas horas após sua obtenção. Também pode-se utilizar plasma.
- **b) Aditivos:** se for plasma, deve-se utilizar heparina como anticoagulante.
- c) Estabilidade e instruções de armazenamento: a amostra deve ser preferencialmente fresca. A LDH é estável até 24 horas sob refrigeração. Não congelar.

# Interferências

Não são observadas interferências por triglicerídeos até 570 mg/dL, bilirrubina até 18 mg/dL, hemoglobina até 180 mg/dL (em amostras com níveis normais de LDH) ou até 350 mg/dL (em amostras com níveis elevados de LDH), nem heparina até 50 UI/mL. Referência bibliográfica de Young para efeitos de drogas neste método.

# Material necessário (não fornecido)

- Espectrofotômetro.
- Micropipetas e pipetas para medir os volumes indicados.
- Material volumétrico adequado.

- Banho-maria à temperatura indicada no procedimento.
- Cronômetro.

### Condições de reação

(Diminuição de absorbância)

- Comprimento de onda: 340 nm (Hg 334 ou 366)
- Temperatura da reação: 25, 30 ou 37°C. Vide os "Valores de referência correspondentes a cada temperatura.
- Tempo de reação: 3 minutos e 30 segundos.

Os volumes de amostra e reagente podem ser reduzidos proporcionalmente, sem que variem os fatores de cálculo.

### Procedimento

# I- Técnica com reagente único

#### A) 30-37°C

Em uma cubeta mantida à temperatura de trabalho, colocar:

| Reagente único                                    | 1 mL  |  |
|---------------------------------------------------|-------|--|
| Pré-incubar alguns minutos, e adicionar a seguir: |       |  |
| Amostra                                           | 20 uL |  |

Misturar imediatamente e disparar simultaneamente o cronômetro. Esperar 30 segundos. Ler a absorbância inicial (vide "Limitações do procedimento") e após aos 1, 2 e 3 minutos da primeira leitura. Determinar a diferença média da absorbância/min ( $\Delta A/min$ ), restando cada leitura da anterior e tirando a média dos valores. Utilizar esta média para os cálculos.

#### B) 25°C

Empregar 100 uL de Amostra e 3 mL de Reagente único, seguindo o procedimento indicado em I-A).

#### II- Técnica com reagentes separados

#### A) 30-37°C

Em uma cubeta mantida a temperatura de trabalho, colocar:

| Reagente A                                        | 1 mL    |  |
|---------------------------------------------------|---------|--|
| Amostra                                           | 20 uL   |  |
| Pré-incubar alguns minutos, e adicionar a seguir: |         |  |
| Reagente B                                        | 0,25 mL |  |

Misturar imediatamente e disparar simultaneamente o cronômetro. Esperar 30 segundos. Ler a absorbância inicial (vide "Limitações do procedimento") e após aos 1, 2 e 3 minutos da primeira leitura. Determinar a diferença média da absorbância/min ( $\Delta A/min$ ), restando cada leitura da anterior e tirando a média dos valores. Utilizar esta média para os cálculos.

# B) 25°C

Empregar 3 mL de Reagente A com 100 uL de Amostra e 0,75 mL de Reagente B, seguindo o procedimento indicado em II-A).

# Cálculos dos resultados

LDH (U/L) =  $\Delta A/\min x$  fator

Em cada caso deverá ser utilizado o fator de cálculo correspondente de acordo com à temperatura de reação selecionada (30-37°C ou 25°C) e à técnica empregada (com Reagente único ou separados) como se indica na seguinte tabela de fatores:

# Técnica com reagente único

|            | Temperatura |         |  |
|------------|-------------|---------|--|
| Long. onda | 25°C        | 30-37°C |  |
| 340 nm     | 4921        | 8095    |  |
| 334 nm     | 5016        | 8253    |  |
| 366 nm     | 9118        | 15000   |  |

# Técnica com reagentes separados

|            | Temperatura |         |  |
|------------|-------------|---------|--|
| Long. onda | 25°C        | 30-37°C |  |
| 340 nm     | 6111        | 10080   |  |
| 334 nm     | 6230        | 10275   |  |
| 366 nm     | 11324       | 18675   |  |

#### Exemplo:

(Os dados apresentados a seguir sao ilustrativos)

|                | Amostra | Diferença | Promédio |
|----------------|---------|-----------|----------|
| Absorbância A1 | 1,582   |           |          |
| Absorbância A2 | 1,503   | 0,079     |          |
| Absorbância A3 | 1,425   | 0,078     |          |
| Absorbância A4 | 1,347   | 0,078     | 0,078    |

Utilizando Fator teórico (37°C): LDH (U/L) = 0,049 x 8095 = 396 U/L Se é utilizado Laborcal como calibrador: Concentração de LDH no calibrador: 526 U/L (37°C)

|                | Calibrador | Diferença | Promédio |
|----------------|------------|-----------|----------|
| Absorbância A1 | 1,528      |           |          |
| Absorbância A2 | 1,462      | 0,066     |          |
| Absorbância A3 | 1,397      | 0,065     |          |
| Absorbância A4 | 1,332      | 0,065     | 0,065    |

Determinação do fator de calibração:

Fator = 
$$\frac{\text{[LDH]}_{\text{calibrador}}}{\Delta A/\text{min}_{\text{calibrador}}} = \frac{526 \text{ U/L}}{0,065} = 8092$$

LDH (U/L) =  $\Delta$ A/min<sub>Amostra</sub> x Fator = 0,078 x 8092 = 631 U/L

#### Método de controle de qualidade

Processar 2 níveis de um material de controle de qualidade (**Laborcontrol 1** e **Laborcontrol 2** da Laborlab) com atividades conhecidas de lactato desidrogenase, com cada determinação.

### Valores de referência

| Temperatura   | 25°C    | 30°C    | 37°C    |
|---------------|---------|---------|---------|
| Valores (U/L) | 120-240 | 160-320 | 230-460 |

Recomenda-se que cada laboratório estabeleça seus próprios valores de referência.

# Conversão de unidades ao sistema SI

LDH (U/L)  $\times$  0,017 = LDH (ukat/L)

# Limitações do procedimento

Ver "Interferências".

Absorbância inicial baixa: uma vez adicionado o soro, se a primeira leitura (tempo 0) for inferior a 0,800 D.O., estando o Reagente B em condições, indica uma amostra com atividade muito alta de LDH (que consome NADH ainda antes desta leitura). Neste caso, repetir a determinação com amostra diluída 1/10 com solução fisiológica e multiplicar o resultado pela diluição efetuada.

# Desempenho

a) Reprodutibilidade: processando simultaneamente duplicatas das mesmas amostras, obtiveram-se os seguintes dados:

| Nível    | D.P.         | C.V.   |
|----------|--------------|--------|
| 439 U/L  | ± 3,64 U/L   | 0,8 %  |
| 010 11/1 | ± 11 /1 II/I | 1 2 0/ |

- **b)** Linearidade: o limite de linearidade é até 1000 U/L. Se o  $\Delta$ A/min é superior a 0,120 D.O. (340-334 nm e 37°C), repetir a determinação com amostra diluída 1/5 ou 1/10 com solução fisiológica, corrigindo conseqüentemente os resultados.
- c) Limite de quantificação: a mínima atividade quantificável de lactato desidrogenase é 24 U/L.

# Parâmetros para analisadores automáticos

Para a programação consultar o Manual de Uso do analisador a ser utilizado.

# Apresentação

2 x 48 mL Reagente A 2 x 12 mL Reagente B (Cód. 1770210)

# Referência

- Societé Français de Biologie Clinique (SFBC) Ann. Biol. Clin. 40: 160, 1982.
- Sociedad Española de Química Clínica. Comité Científico, Comisión de Enzimas. Quím. Clin. 57-61, 1989.
- Young, D.S. "Effects of Drugs on Clinical Laboratory Tests", AACC Press,  $4^{\text{th}}$  ed., 2001.

# Termo de garantia

Este Kit como um todo tem garantia de troca, desde que esteja dentro do prazo de validade e seja comprovado pelo Departamento Técnico da Laborlab Produtos para Laboratórios Ltda. que não houve falhas técnicas na execução e manuseio deste kit, assim como em sua conservação.

# **SÍMBOLOS**



Este produto preenche os requisitos da Diretiva Européia 98/79 CE para dispositivos médicos de diagnóstico "in vitro"

C REP

Representante autorizado na Comunidade Européia

IVD

Uso médico-diagnóstico "in vitro"

 $\Sigma$ 

Conteúdo suficiente para <n> testes

Data de validade

ľ

Limite de temperatura (conservar a)

\*

Não congelar

₩

Risco biológico

--->

Volume após da reconstituição

Cont.

Conteúdo

LOT

Número de lote

...

Elaborado por:

Χn

Nocivo

Ē

Corrosivo / Caústico

Xi

Irritante

Consultar as instruções de uso

Calibr.

Calibrador

CONTROL +

Controle

CONTROL +

Controle Positivo

CONTROL -

Controle Negativo

REF

Número de catálogo



Produtos para Laboratórios Ltda. Estrada do Capão Bonito, 489 Guarulhos - SP- Brasil - CEP: 07263-010 CNPI: 72.807.043/0001-94 Atendimento ao cliente: +55 (11) 2480 0529/+55 (11) 2499 1277 sac@laborlab.com.br www.laborlab.com.br